Testing of AI-based systems such as autonomous vehicles is challenging due to many situations and scenarios. Brute force is expensive and has gaps, as we see in practice. We thus use synthetic data for an AI-driven testing. This data covers real-world scenarios to train autonomous systems in a simulation-based environment. The training success is evaluated in a data loop and enhanced to close blind spots and unknown knowns. This thesis targets to integrate a requirements and test engine to an automated test system.
The goal of the thesis is to integrate existing parts of the system. A fully running system shall be implemented. The integration comprises verification and validation checks for the existing parts. Professional tools such as DOORS shall be used for industry-scale AI-based testing of autonomous systems.
Knowledge in Python
Industry-scale software engineering and tools
Work in a self-independent way
Passionate about clean and good quality code
Capable of integrating your work with other parts of the system
Christof Ebert
♦
Die Anforderungen an Elektronik in Bezug auf die Verlängerung der Wartungs-intervalle und die Lebensdauer steigen. Für die Erfüllung dieser Anforderungen ist eine sehr gute Kenntnis aller beeinflussenden Faktoren notwendig. Die Zusammenhänge sind dabei für den Menschen nur schwer zu entdecken und herzustellen, weshalb Machine Learning eingesetzt werden soll.
Literaturrecherche über die bisherige Verwendung von Hybriden Modellen zur Lebensdauervorhersage in der Literatur
Konzeption einer beispielhaften Anwendung
Prototypische Umsetzung
Vorlesung TMS2 und ZSA
Selbstständiges Arbeiten
Gute Deutschkenntnisse
Gute Englischkenntnisse
Maurice Artelt
♦